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ABSTRACT 

We show that any two aperiodic, recurrent random walks on the integers 

whose jump distributions have finite seventh moment, are isomorphic as 

infinite measure preserving transformations. The method of proof involved 

uses a notion of equivalence of renewal sequences, and the "relative" iso- 

morphism of Bernoulli shifts respecting a common state lumping with the 

same conditional entropy. We also prove an analogous result for random 

walks on the two dimensional integer lattice. 

0. Introduction: Markov shifts and random walks 

The Markov shift T = Tp of an irreducible, recurrent stochastic matrix P 

on the countable state space S, with stationary distribution {m~: s E S} is the 

left shift on XT = S z equipped with the T-invariant c-algebra generated by 

cylinder sets of form 

[81 , . . . ,  8hi = {X e XT: Xk = 8~ (1 < k < n)} ,  

and the T-invariant measure m T  defined by 

m r ( [ S l , . . . ,  ~nl) = ms,P~l,~2"" "Ps~-l,~o" 
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It is known that  T is a conservative, ergodic, measure preserving transformation. 

The isomorphism theory of positively recurrent Markov shifts is well under- 

stood. All aperiodic, positively recurrent Markov shifts with the same given 

entropy are isomorphic ([O1,O2,FO], see also [03]). All Bernoulli shifts with the 

same given entropy are finitarily isomorphic ([KS,Pet]). 

This paper is the first establishing isomorphism theorems for a class of null 

recurrent Markov shifts, and indeed for a class of conservative infinite measure 

preserving transformations. 

Invariants fo r  isomorphism of Markov shifts are given in [A1] where it was 

shown that  the a s y m p t o t i c  t y p e ,  the asymptotic proportionality class of the 

r e t u r n  s e q u e n c e  
n--1 

an(Tp)"~--I ~ , ( k )  V s E S  
ms z - ,  ,-s,s 

k=O 

is a similarity invariant: if Tp and Tp, are similar (that is, have a common 

extension, for example are isomorphic, see §1), then 

a,~(Tp) 
3 liInoo a,~(Tp,----~ e ~-. 

In this paper, we consider random walks on Z d (d = 1, 2)). Let f be a proba- 

bility on G, a countable Abelian group, and define a stochastic matrix P = PI  on 

S -- G by Ps,t :--- f t - s .  It is evident that rn~ = 1 is a stationary distribution for 

PI,  and the shift 7"/of (PI,  m) is known as the r a n d o m  walk  (on G) with j u m p  

d i s t r i b u t i o n  f .  The stochastic matrix Pf  is irreducible if[ S I := {t • G: f t  > 0} 

is contained in no proper subgroup of G, and Pf is aperiodic if S I is contained 

in no coset of any proper subgroup of G. It is known that a random walk on 

Z is conservative if, for example its jump distribution has first moment, and is 

centred. A random walk on Z 2 is conservative if its jump distribution has second 

moment, and is centred. In [A1], an uncountable, pairwise dissimilar collection of 

aperiodic, recurrent random walks on Z was presented. The jump distributions 

of this collection are in the domains of attraction of different stable laws, and 

have return sequences, no two of which are asymptotically proportional. 

For irreducible, random walks on Z d (d = 1, 2) with centred jump distributions 

f with finite second moment, return sequences are of form 

on Z, 
an(Tl) P ~ g  

c(i logn on Z 
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where 

and 

c(1)=Ir~-~l' a~=Zn2fn'~ez 

c~) 1 r,,~ = E n,.j jr(. , , . ,)  (i,3 = 1,2) 
2r det F (nl,n~)eZ 2 

Here, we consider random walks on Z d (d = 1, 2) with jump distributions jr 

satisfying 

(1) ~ 1.17jro < ~ ,  ~ .jrn = 0, 
n E Z  d n 6 Z  d 

for example 

Ir~d) = { 0(½)6 else.k E {0,+1} 6, 

MAIN THEOREM: /[  jr is an aperiodic probability on Z d (d = 1,2), and satisfies 
(1), then T! is isomorphic with T~(d). 

The structure of the proof is as follows. A Markov shift is viewed as a Markov 

tower  (§3) that is, a (Kakutani) tower (§1) whose height function is measurable 

with respect to an independent generator for the base transformation. The dis- 

tribution of the height function of a Markov tower is determined by a canonically 

associated renewal sequence (§3). The finitary isomorphism of Markov towers 

with the same renewal sequence (Proposition 3.1) is contingent on the finitary 

"relative" isomorphism of Bernoulli shifts with respect to a common state lump- 

ing (Theorem 2.1). A non-finitary relative isomorphism theorem was established 

in [Wh]. 

The notion of equivalence of renewal sequences is introduced in §3, and the 

isomorphism of ergodic random walks with equivalent renewal sequences is es- 

tablished (Theorem 3.6). The proof that the random walks appearing in the 

main theorem have equivalent renewal sequences (Theorem 5.1) is given in §§4,5. 

It uses the structure of Kaluza sequences (§4), and a refined local limit theorem. 

Subsequently, Theorem 5.1 has been improved in [ALP]. 
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1. I s o m o r p h i s m ,  f ac to r s ,  a n d  s i m i l a r i t y  

In this paper, a measure preserving transformation T is considered acting on 

a s t a n d a r d  measure space (XT, BT, roT) (a complete, separable metric space 

equipped with its Borel sets and a a-finite, non-atomic measure). I t  is known that  

standardness is unaffected by replacing XT with a T-invariant subset X~ E /3T 

af full measure, and we shall consider T acting on (XT,  BT, roT) to be the same 

as T acting on ( X~,  BT M X~., mT ). 

Let S and T be measure preserving transformations, and let e E R+. A c- 

f a c t o r  m a p  from S to T is a map 7r: X s  --~ X T  such that  

rrS = Trr, ~r-l l3T C Bs, and m s  o r -1 = CmT. 

In this situation (denoted by 7r: S _L+ T), one says that  T is a c - f ac to r  of S and 

that  S is a c - e x t e n s i o n  of T (both denoted S _2_+ T). 

I t  is necessary to consider c-factor maps with c ~ 1 as our measure spaces are 

not normalised. The constant c can be thought of as a relative normalisation 

of the transformations concerned. I t  was shown in [A1] that  if Tp and TQ are 

Markov shifts and S is a measure preserving transformation such that  

1 Tp , S - - ~  TQ, 

then 
an ( TQ ) 
- -  - - +  C a s  n . - -4  o o .  

a,~ ( Tp ) 

In case we wish to suppress the relative normalisation, we say that  a measure 

preserving transformation T is a f a c t o r  of a measure preserving transformation 

S (written S --* T) if it is a e-factor for some c E l~_. In this case, we also say 

that  S is an e x t e n s i o n  of T. 

Two measure preserving transformations are said to be s im i l a r  if they have a 

common extension, that  is: if there is another measure preserving transformation 

of which they are both  factors; and they are said to be s t r o n g l y  d i s jo in t  if they 

have no common extension. 

Any two transformations preserving finite measures are similar, their Cartesian 

product being a common extension. Invariants for similarity of transformations 

preserving infinite measures are studied in [A1,A2], where it is shown that  sim- 

ilarity is an equivalence relation. As mentioned in §0, an uncountable family of 

pairwise strongly disjoint aperiodic, recurrent random walks is presented in [A1]. 



Vol. 87, 1994 ISOMORPHISM OF RANDOM WALKS 41 

Examples of conservative, ergodic, measure preserving transformations which are 

strongly disjoint from their inverses are given in [A2]. We note here that  it follows 

from Proposition 3.1 of this paper  that  any conservative, ergodic Markov shift is 

finitarily isomorphic to its inverse. 

An invertible c-factor map from S to T is known as a c - i s o m o r p h i s m  (from S 

to T), and if one exists, S is said to be c - i s o m o r p h i c  to T. Measure preserving 

transformations S and T are said to be i s o m o r p h i c  if S is c-isomorphic to T for 

some c • R+. For example, if T I and Tf, are isomorphic random walks on Z as 

in the main theorem, then Tf is ~-fTs, -isomorphic to Tf, (because a'~'(TFa,~(TI ) ) -'~ afaF as 

n ----~ OO). 

In this paper, we establish isomorphism between infinite measure preserv- 

ing transformations by means of an isomorphism of (Kakutani) towers ([Kak]). 

A tower T is built using a finite measure preserving transformation S, called 

the b a s e  t r a n s f o r m a t i o n ,  and a measurable function ~: Xs  --* N, called the 

he igh t - ,  or r e t u r n  t i m e  func t ion .  One sets 

XT = {(x,n):  x E Xs,  1 < n < ~(x)}, 

BT = a{A x {n}: n • N, A • Bs M [~ > n]}, mT(A x {n}) = ms(A), 

and T(x, n) = ~ (Sx, ~(Sx)) if n = 1, 

t ( x , n -  1) i f n  _> 2. 

The tower is called f ini te ,  or inf ini te ,  in accordance with the value of 

mT(XT) = IX ~dms. 
S 

It  was shown in [Kak] that  a tower is a conservative, measure preserving trans- 

formation, and is ergodic iff the base is ergodic. I t  was also shown there that  

any invertible, conservative, ergodic, measure preserving transformation is iso- 

morphic to a tower over any of its induced transformations. In view of this, we 

shall sometimes specify this tower representation for T by specifying the b a s e  

s e t  A E BT. 

PROPOSITION 1.1: Suppose that T and T' are towers over the base transfor- 

mations S and S', with height functions ~ and ~' respectively. Suppose that 

r: S --+ S' is an isomorphism of S to S' such that 

~' o ~ = ~ ms-a.e, on i s ,  
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then T and T ~ are isomorphic. 

Proof." We define ¢: X T --~ X S, × N by  

¢(x, n) = (~r(x), n). 

The conditions imposed on ~r ensure that ¢ is an isomorphism from T to T'. 

We shall say that  a tower is no rmal i sed  if its base is a probability preserving 

transformation. If the towers in proposition 1.1 are both normalised, then ¢ 

turns out to be a 1-isomorphism. 

2. I s o m o r p h i s m s  of  Bernoul l i  shif ts  r e spec t ing  s t a t e  lumpings  

The kind of isomorphism of bases assumed in Proposition 1.1 respects the return 

time function, and has been studied in [Th]. In this section, we establish iso- 

morphisms of Bernoulli shifts which respect state lumpings. Let B(;3) denote the 

Bernoulli shift with independent generating partition ;3. Now let a be a lump-  

ing of ;3, that  is ;3 -< a (every a E a can be written as a union of elements of 

;3), then the Bernoulli shift B(a)  is a factor of B(;3) by the canonical factor map 

lr = ~r~: B(;3) ~ B(a)  defined by Ir(x)n = a(xn) where x E a(x) E a. This kind 

of factor map is called a s t a t e  lumping .  

Recall that  in this situation, the Kolmogorov-Sinai entropies of the measure 

preserving transformations B(a),  and B(;3), h(S(;3)), and h(B(a) )  are related 

in the following way: 

h(B(;3)) = H(;3) = H(a )  + H(;3ia) = h(B(cQ) + H(;3ia), 

where H(;3) denotes the entropy of the partition ;3, 

bE~ 

and the quantity H(;3]a) (the conditional entropy of ;3 given a) is given by 

H(;3I~) = ~ m(a)H(;3(a) ) 
aEa 

where for a a union of atoms of ;3, 

;3(a) = {b E ;3: b C_ a} and 
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Note that  there may be many ways in which a occurs as a lumping of/3. In case 

H ( a )  < co, the conditional entropy is always the same (being H(/3) - H(a) ) .  

Suppose now that  B(/3), B(/3'), and B(a )  are Bernoulli shifts, and that  a ap- 
, , pears as a lumping both of/3, and/3' .  Let ~r,~: B(/3) --, B(a) ,  and ~r~. B(/3') --* 

B(a )  be state lumpings. We'll say that an isomorphism ~r: B(/3) --* B(fl') r e -  

' if spec t s  the state lumpings ~r~ and ~r~ 

~ 0 7r  ~ ~. 

We shall sometimes abbreviate this to "Tr respects a" .  

T H E O R E M  2 . 1 :  Suppose that B(/3), B(/3'), and B(a )  are Bernoulli shifts, a ap- 

" B(/3') pearing as a partition both of~3, and/3'. Let ~ :  B(/3) ~ B(a), and ~ .  

B(a) be state lumpings. I f  

H(/3la) -- g(/3 ' la) ,  

then there is a finitary isomorphism ~r: B(/3) --* B(/3') respecting a. 

Remarks: 1. The assumptions of the theorem hold if, in particular, H ( a )  < co 

and H(/3) = H(/3'). 

2. A non-finitary isomorphism respecting the state lumpings Cat least when 

/3,/3' are finite) can be obtained using the methods of [Th]: the transformation 

B(/3) is "relatively weak Bernoulli" with respect to the factor (B(/3), a)  which 

therefore "splits off". 

3. Theorem 2.1 in case/3,/3' are finite can be obtained by a modification of the 

methods of [KS]. The modification made is in the definition of filler measures. 

Choose a "marker" in a E a, and use this as in [KS] to define skeletons. Now 

consider a "sinew" to be a word of a-symbols whose projection onto the marker 

process is a skeleton. Given a sinew s of length m, corresponding to a skeleton 

which concludes in a run of g a-s. Consider the filler space ~(s )  =/3 ,~- t  equipped 

with the filler measure #(.Is). The last e coordinates are left free in order to ensure 

independence of fillers. Now continue as in [KS] obtaining "assignments" which 

respect sinews, and which yield an isomorphism, as by the ergodic theorem, 

1 (  1 ) 
log , ( b l , . . .  ,bnl [a(bl ) , . . . , a (bn)] )  -* g(/31a) 

in measure as n --* oc. This isomorphism respects c~. An analogous modification 

of the methods of [Pet] works when/3,/3' are both infinite. 

We outline a proof of Theorem 2.1 assuming only the non-relative 
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FINITARY ISOMORPHISM THEOREM ([KS,PET]): Bernoulli shifts with the same 

entropy are tinitarily isomorphic. 

Remark: This theorem is established in [KS] for Bernoulli shifts on finite state 

spaces, and in [Pet] for Bernoulli shifts on infinite state spaces. In order to 

complete the proof of this theorem, it is necessary to show that a Bernoulli shift 

B(f~) on a finite state space is isomorphic to a Bernoulli shift B(~')  on an infinite 

state space with the same entropy. 

This can be done as follows. Firstly, the Bernoulli shift B(e) on four equiprob- 

able symbols is finitarily isomorphic to B(~') where e' = {El,  E2 , . . .  } with 

m(Ek) = ~ .  This follows from the Plum-Hanson theorem (see [BH] or [Jac; 

p.289]), and can be proved by the methods of the proof of step 2 (below). 

Next, by [KS,Pet], we may assume that there is some Bernoulli shift B(~) such 

that  B(/3) = B(~) × B(6) and B(/~') = B(~) × B(6'), where 6 and 6' both have 

a lumping a = {0, 1} and 

6(0) = 6 ' (0)--  (0}, 5(1) = e, 5'(1) = e'. 

It follows from the proof of step 1 (below) that B(5) and B(6') are finitarily 

isomorphic, whence, B(/3) and B(/3') are finitarily isomorphic. 

Proof of Theorem 2.1: For the rest of this section, all isomorphisms are finitary, 

a is fixed, and it will be convenient to refer to an a-respecting isomorphism 

lr: B(/3) --* B(/3') as being ove r  (states) D C a if 7r(x)~ = xn whenever a(xn) 

D. Clearly, if B(~) and B(fl') are isomorphic over D, then/3(a) = fl'(a) V a E 

a \ D, and any isomorphism of B(/3) and B(f~ I) over D respects 

a ' : = D U  U ~(a) 
a E a  ~ D 

of which a is a lumping. 

STEP 1 (ISOMORPHISM OVER A SINGLE STATE): 

a E a such that  

Suppose that there is a state 

H(~(a)) = H(~'(a)), ~(a') = ~'(a') V a' ~ a, a' E a, 

then B(ft) and B(f~') are isomorphic over a. 

Proof'. Let ¢: B(~(a)) --* B(/3'(a)) be an isomorphism as in the finitary isomor- 

phism theorem. Consider B(~) and B(~') as towers over B(~(a)) and B(~'(a)) 
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with height functions h and h' respectively. Writing Hn = [h = n], it is clear 

that 

"~ = {Hn n [b, Cl, . . . ,cn_l]: n > 1, b E ~(a),c~ E [3(ak), ak ~ a, 1 < k < n -  1} 

is a generator for B(~(a)) ,  as is 7' (defined analogously) a generator for B(/~'(a)). 

Using the notation 

x E "~(x) = Hh(x) N [b(x), e l ( x ) , . . . ,  Ch(x)-l(x)] e % 

an isomorphism ¢: B(~(a)) ---* B(/3'(a)) is given by 

~/'(¢(x)) = g~(~) M [(¢(X))o, Cl(X),. . . ,  Ch(x)-l(X)]. 

An isomorphism of the towers ~o: B(/3) -* B(/J') is obtained by Proposition 1.1 as, 

evidently, h' o ¢ = h. It is directly verifiable that lr has the required properties. 

STEP 2 (MESHALKIN, BLUM-HANSON ISOMORPHISM): Suppose that 0, 1 E a,  

and 
mqo = nql, Z(0) = ~'(0) × C",  

~ ' ( 1 ) = / ~ ( 1 ) x C  m, / ~ ' ( a ) = / ~ ( a ) V a ~ 0 , 1 ,  a e a ,  

then B(/~) and B(/3') are isomorphic over {0, 1}. 

Proof." See also [Mesh, BH, Jac p.289]. We establish a matching of 0-s and 1-s 

in generic printouts of the (~-process. Let x E az  and let K~ = Ki(x)  = {n E 

Z: xn = i } .  A m a t c h i n g  will be a map 

M: a Z --- 2 ( Z x { l ' ' ' ' ' m } ) x ( z x { l ' ' ' ' ' n } )  

such that for a.e. x e a z there is a bijection ~o~: Ko(x) x {1 , . . . ,  m} --* Kl(X) x 

{1 , . . . ,  n} satisfying 

M(x)  = {((k,j),~o~(k,j)): k • Ko(x), 1 < j < m},  

and ~ T x ( k -  1, j )  = ~ox(k , j ) -  (1, 0). The matching M is measurable if 

{x e az: ( (k , j ) , ( l , i ) )  • M(x)} • B(a  z) V k , j , t , i  • Z, 

and finitary if the above sets are open mod 0. 
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Given a measurable matching, write for t E Kl(X), 1 < j < m 

~o;l( t , j )  = (k(~,j) ,  ~(~,j)) e Ko(x) x {1 , . . .  ,n}. 

Writing, for b • /3(0), b = (y(b),cl(b),...,c,~(b)) • /3'(0) x C n, we define the 

isomorphism ¢: B --* B I by 

x~ u ~ K0 U K1 

y(x~,) u • Ko 
¢(X)u = (Xu,Ctc(u,1)(Xk(u,1)),..., C~(~,,~)(Xk(~,m))) • /3(1) X C m 

----/3'(1) u • K1 

If the matching M is finitary, then so is the isomorphism ¢. 

The matching M is established as in [Mesh, BH] as follows. Consider a printout 

of the a process. Define an (initial) valency function V: a z x Z --* Z+ by 

I 
n u E  Ko, 

V(u)  = m u E K1, 

0 else. 

Set 

M v  = {((u, V(u)) ,  (v, V(v))): (u, v) e Ko x g l ,  u < v, V(w)  = 0 V u < w < v} 

and define the modified valency function 

Y ( u ) -  I 3 v ~ (u,v)  or (v ,u)  e My ,  
v'(~)  = v (u)  e~e. 

Note that  0 _< V ~ < V. Continue this process, obtaining 

Mk C (go  x { 1 , . . . , m } )  x ( g l  x { 1 , . . . , n } )  and Vk: Z ~ Z+ 

such that  V1 = V, Mk = Mv~, and Vk+l = V~. It follows from mq0 = nql, by 

random walk theory, that  Vk(u) J, 0 a.e. V u E Z, and this means that  

oo 

M : = U M ~  
k = l  

is the required matching, which is easily checked to be finitary. 
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STEP 3 (IsoMORPHISM OVER TWO STATES): Suppose that q 0, 1 E c~, such 

that 
qoH(/3(0)) + qig(/3(1)) = qoH(/3'(0)) + q1H(/3'(1)), 

/3'(a) =/3(a)  V a # 0, 1, a E c~, 

then B(/3) and B(/3') are isomorphic over {0, 1}. 

Proof'. A combination of steps 1 and 2 demonstrates this in case q0 and ql are 

rationally dependent. Without loss of generality, H(/3(0)) > H(/3'(0)). The first 

case we consider is that  H(/3(0)) > H(/3'(0)) > 0. Using step 1, we may assume 

that  /3(0) refines /3'(0), and that  3 b • /3'(0) such that  p(0 \ b) and p(1) are 

rationally dependent. Now let (~' = (a • (~: a ~ 0) U {b, 0 \ b), and apply step 

2, respecting cd, and over the states 0 \ b and 1. This yields an isomorphism 

of B(/3) and B(/3') respecting c~', and hence over a (which is a lumping of a ') .  

To obtain the case H(/3'(O)) = 0, consider an intermediary Bernoulli shift B(/3") 
also with c~ as a state lumping, also satisfying 

q0H(/3(0)) + qlH(/3(1)) = qog(/3"(0)) + qlH(/3"(1)), # ' ( a )  =/3(a)  V a ¢ 0, 1, 

and, in addition, H(/3(0)) > H ( # ' ( 0 ) )  > 0. By the above, B(/3) and B(/3") are 

isomorphic over ~. It follows from H(/3'(0)) = 0 and 0 < H(/3"(0)) < H(/3(0)) 

that  H(/3'(1)) > H(/3"(1)) > 0, whence, again by the above, S(/3") and B ( # )  

are isomorphic. 

We establish the theorem in the case of a finite lumping (~ by concatenating 

finitely many isomorphisms as in step 3. 

STEP 4: There is a Bernoulli shift B(3') such that H(3') = H(/3ia), and such 

that B(/3) is isomorphic to B(c~ × 3') respecting c~. 

Proo~ We assume first that  H(/3(a)) < oc V a • a. We write a = {ak: k >_ 1}, 

and for 3' = (gn},~eN, we write V,~ = {g l , . . .  ,gn,gn} where gn = Uk>,~ gk- 

There is a partit ion % and a sequence nk --~ oo such that  

n k  ~ k  

E m ( a j l  U = V k > 
j----1 i----1 

Now set/3 = f~o, and consider Bernoulli shifts B(/3k) with a as a state lumping 

for each k _> 1, such that  

J" ~/~ 1 < j < nk, &(a j) 
/3(aj) j > nk. 
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Use step 2 to get isomorphisms Tk: B(f~k) --' B(~k+l) respecting the refinement 

ak of a defined by 
= ~ V J  l_<j_<nk,  ak(aj) [ {aj}  j > nk. 

It now follows that each coordinate of 

T k o...o T 0 

changes only finitely many times a.e., whence 

T k o . . . o  T 0 

converges a.e. The limit is clearly an isomorphism 

~:B(fl)--- ,B(a x 7) 

which respects a. 

In case our assumption is not satisfied, we can write a = {ak: k _> 1} where 

H(~(al)) = co. Let H(7) -- co and define a sequence flk (k >_ 1) of refinements 

of a by 
S 7 1 <_ j _< k,  k(aj) 

j3(aj) j _ > k + l .  

By step 1, B(~) and B(fll) are isomorphic over al, and by step 3, B(flk) and 

B(Bk+I) are isomorphic over {ak, ak+l} V k _> 1. As above, the concatenations ot 

these isomorphisms converge to yield an a-respecting isomorphism of B(fl) with 

B(a x 7). 
We claim that Theorem 2.1 is now established, for by step 4, there are Bernoulli 

shifts B(7), B('7') such that B(fl) is isomorphic to B(a x ~/) respecting a and 

B(fl') is isomorphic to B(ax7 ' )  respecting a. Since H(7) = H(~[a) = H(~'la ) = 
H(7'), B(7) is isomorphic to B(7') by [Pet], whence B(a x '7) = B(a) x B(~/) is 

isomorphic to B(a x 7') = B(a) x B(~/') respecting a. 

3. Markov towers and their renewal sequences  

A Markov  tower  is a tower equipped with an independent generator for the base 

transformation, with respect to which, the height function is measurable (i.e. the 

independent generator refines the partition generated by the height function). 
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Let T be a normalised Markov tower over the base S with height function 

~. The r e l a t i ve  e n t r o p y  of the Markov tower is given by H(fllc~(~)) where 

a(~)  = {[~ = k]}keN, and fl is the independent generator for S which refines 

PROPOSITION 3.1: Suppose that T, and T ~ are two in/inite, normalised Markov 

towers with the same height function distribution, and the same relative entropy, 

then T and T ~ are tinitarily isomorphic. 

Proo~ The base transformations have a common state lumping in the return 

time process, and there are, by assumption, independent generators for these 

base transformations refining the height function partititions, and having the 

same relative entropy. By Theorem 2.1, there is an isomorphism of the base 

transformations which respects the return time state lumping, and hence by 

Proposition 1.1, the towers are isomorphic. 

Remarks about relative entropy: Let T be a conservative, ergodic, measure 

preserving transformation. It follows from Abramov's theorem lAb] that 

h(T) = mT(A)h(TA) 

is the same for any set A E BT of positive, finite measure, where h(TA) is the 

Kolmogorov-Sinai entropy of TA, the induced transformation on A with respect 

to the probability mT(.IA). The number h(T) is called the e n t r o p y  of T. This 

generalisation of Kolmogorov-Sinai entropy was introduced in [Kre]. 

Suppose that  T is a normalised Markov tower over the base set A E BT, 

considered with respect to the independent generator/3. Clearly, 

h(T) = h(TA) = H(/3) = H(flla(qaA) ) + H(a(qOA)), 

whence, in case H(a(qaA)) < oo, the relative entropy of the Markov tower over 

A is given by h(T)  - H(~(~A)). It now follows from [A1] that  two normalised 

Markov towers with the same finite entropy height function distribution, are 

isomorphic only if they have the same relative entropy. 

We do not know if it is possible for the same conservative, ergodic, measure 

preserving transformation to be isomorphic to different normalised Markov towers 

with isomorphic bases, identical (infinite entropy) height function distributions, 

but different relative entropies. 



50 J. AARONSON AND M. K E A N E  Isr. J. Math .  

If T is a Markov tower over the base set A C BT, then {~OA o T] :  n E Z} are 

independent, identically distributed random variables on the probability space 

(A, BT Cl A, mT(.IA)), and hence the sequence u = u(A) defined by 

u,~ : mT(T-'~A[A) (n > O) 

is a recurrent renewal sequence. It characterises the distribution of the height 

function ~A by means of the renewal equation 

n 

Un = E g k u n - k  V n E N 
k = l  

(where gk = m([qOA = k][A)). We call u the r ene w a l  s e q u e n c e  o f  t h e  M a r k o v  

t o w e r  T over A. 

By Proposition 3.1, two infinite, normalised Markov towers with the same 

renewal sequence, and the same relative entropy are finitarily isomorphic. 

A Markov tower T with base A is called s imple  if the partit ion {[q0m = k]:  k E 

N} is a generator for TA. Any Markov tower is a (canonical) extension of a simple 

Markov tower with the same base, height function and renewal sequence. Simple 

Markov towers can be constructed as Markov shifts from their renewal sequences 

in the following way (due to [Ch]). Let u be a recurrent renewal sequence. There 

is a probability g = g(u) on N satisfying the renewal equation 

n 

Un : E gkun-k V n E N. 
k = l  

One can define a stochastic matrix P = P,, with state space N by 

gk i f j  = 1, 

Pj,k = 1 if j -  k = 1, 

0 else. 

This matrix is irreducible, recurrent, and has the stationary distribution 

o o  

mk = E g j .  
j=k 

The shift T~ of (P~, m) is a normalised, simple Markov tower over the base [1]. 

The distribution of the height function is given by m(~o[1] = k[[1]) = gk, and the 

renewal sequence of the tower is 

m(T~-n[1][[1]) - ,,(,~) /~1,1 = Un'" 
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Clearly any simple Markov tower can be constructed in this way, and so if T is 

a Markov tower over the base set A E /~T, then T --* T~(A). 

PROPOSITION 3.2: I f  P is an irreducible, recurrent stochastic matr ix  on S, and 

s E S, ~(n) t.s,~ = u~, then Tp is a Markov tower over Is] with renewal sequence u. 

Proo f  The partition 

13 = {[s, t l , . . . , t n ,  s]: n > O, t l , . . . , t n  • S \ { s ) )  

is an independent generator for T N with respect to which ~[s] is measurable. 

PROPOSITION 3.3: Let B be a Bernoulli shift. Suppose that T is a normalised 

Markov tower over A, then T x B is a normalised Markov tower over A × XB 

with relative entropy a t /eas t  m T ( X T ) h ( B ) .  

Proof: Again, we produce a suitable independent generator for the base trans- 

formetion (T × B)A×X, .  

Let fl be the independent generator for TA with respect to which ~A is mea- 

surable. If 

= {b x [a l , . . .  ,ak]: b E 13, k E N, b C [~A = k], a l , . . . a  k E S} 

where S is the alphabet of B, then ~ is an independent generator for (T × B)A × NB, 

and evidently, ~A × XB ~- ~A is m-measurable. The relative entropy of this Markov 

tower satisfies 

H(~Ia(~A×xB)) >_ ~_,gk ~_, mB([al,...,ak])log m~([al ...,ak]) 
k=l  al . . .a~ES 

= ~ nh(B)gn = m T ( X T ) h ( B ) .  

PROPOSITION 3.4: Suppose that G is a discrete Abelian group, and that f E 

P(G),  gives rise to an irreducible, recurrent random walk. Then T S is a Markov 

tower over [0] with infinite relative entropy. 

Proof." Let gn = gn(u) -- mr~([~[ol = n]), n E N. By ergodicity of the random 

walk 

E n g  n : 00. 

nEN 
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Let 
~--- {[0, b, 0]: k • N, be  (V\{0})k-1}, 

then, as in Proposition 3.2, ~ is an independent generator for (T$)[o] with respect 
to which ~O[o] is measurable. Now 

H(~[~) 

( 1 ) 
=~9n+l ~ log .([o,b, oll[~=~+x]) .([o,_b, oll[~o=n+xl) 

n = l  bE(G x{0})  '~ 

= lira E g n + l  E log .([0,_b, 011[~=n+l]) .  
n = l  be (G x{0})"  

Since 3 p < 1 such that fg < p V 9 E G, we have that 

N 

E9o÷1 E 
n=l be(G'-(0))" 

N 

( 1 ) 
log #([0,_b.,0]l[~=n+l]) #([0,k, 0]l[~ n + l ] )  

n=l t,e(a..{o})~ ( ( n +  1 ) l o g ( ~ ) -  log(g-~+l ) ) #([0,b, 0][[~ = n + 1]) 

= E gn+l (?Z + 1 ) l o g  - l o g  

n = l  

= E + E 
l < n < N ,  g,~+1> ~-'~- l < n < N ,  g,~+t<A~ 

> ( ( n +  1 ) l o g ( ~ ) -  31ogn)gn +O(1) E 
l<n~N, gn+l:>--~ 

= E ( ( n  + 1)1og - 31ogn 9 . + O (1 )  
• n = l  " 

----*(30. 

Remark: In the case of an ergodic random walk on Z with jump distribution 

having finite second moment, H(a(~[o])) < oc and Proposition 3.4 could have 
been deduced from the remarks above about relative entropy. However, in the 
case of the simple ergodic random walk on Z 2, H(a(~[0])) = co. 

Proposition 3.1 tells us when we can obtain isomorphism of Markov towers 

with the same renewal sequence. Now, we collect some information about Markov 

towers with different renewal sequences. 
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Two renewal sequences u, and u ~ are e q u i v a l e n t  (denoted u ~ u ~) if there are 

positively recurrent, aperiodic renewal sequences v, and v ~ such that  uv = u'v ~. 

T H E O R E M  3 . 5 :  Suppose that T, and T ~ are infinite Markov towers with infinite 

relative entropy, and equivalent renewal sequences. Then T and T ~ are isomor- 

phic. 

Proof: Let T and T r be infinite Markov towers over the sets A E BT and 

A ~ E BT, respectively. By assumption, there are positively recurrent, aperiodic 

renewal sequences v and v ~ such that  

u(A)v = u(Ar)v ' := w. 

Let B be a Bernoulli shift with infinite entropy. Then 

- -  T is a Markov tower over A with infinite relativ e entropy (by assumption). 

- -  T~(A) x B is a Markov tower over A x XB with the same height function 

distribution, and (by Propositions 3.2 and 3.3) with infinite relative entropy. 

Therefore T and T~(A) × B are isomorphic (by Proposition 3.1). 

Next, B and T~ × B are isomorphic (see [FO] and [03]), whence T~(A) × B and 

Tu(A) x Tv x B are isomorphic. 

Thus far, we have shown that  T and T~(A) x Tv × B are isomorphic. By 

symmetry,  T t and T~(A, ) x Tv, x B are also isomorphic. 

To continue, 

- -  T~(A) x T,  is the Markov shift of the stochastic matr ix  P~(A) × P, on N × N. 

By Proposition 3.2, T~(A) x T, is a Markov tower over [1] x [1] with renewal 

sequence w, and therefore T~(A) x T, x B is a Markov tower over [1] × [1] × XB 

with renewal sequence w, and with infinite relative entropy (by Proposition 3.3). 

Similarly, T~(A,) × T,, x B is also a Markov tower over [1] × [1] x XB with 

renewal sequence w, and with infinite relative entropy. 

Therefore T~(A) × T, x B is isomorphic with T~(A,) × T,, x B (again by Propo- 

sition 3.1), and the conclusion is that  T and T ~ are isomorphic. 

THEOREM 3.6: Suppose that G and G r are discrete Abelian groups, and that 

f E P(G),  f '  E 7)(G ') give rise to irreducible, recurrent random walks. H the 

renewal sequences u ( f )  := (f~n)~>_o and u( f ' )  are equivalent, then the random 

walks T S and T S, are isomorphic. 

Proof." By Proposition 3.4, and Theorem 3.5. 
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In view of Theorem 3.6, in order to establish isomorphism between two random 

walks, it is sufficient to show that  their renewal sequences are equivalent. Ac- 

cordingly, the rest of this paper is devoted to studying the equivalence of renewal 

sequences. 

4. K a l u z a  s e q u e n c e s  

A bounded sequence u = {un: n > 0} is called a K a l u z a  s e q u e n c e  if un > 0, 

Uo = 1, and 

v ~ : =  u'~+l Tq_~ l a s n T o o .  
~tn 

If (u~: n >_ 0} is a Kaluza sequence, then, [Ken,Kin], 

oo 

un = qn 1-[ Pkk^'~ where Pk - vk-1 e (0, 1]. 
Vk 

k=l  

Clearly, any sequence of this form is a Kaluza sequence. We'll denote pn = p,~(u), 
and sometimes specify Kaluza sequences by giving pn E (0, 1]. 

Note that if u is a Kaluza sequence, then, since ux > 0, necessarily 

Z log < co. 
k=l \pk~u)] 

It was shown in [Kal], that  Kaluza sequences are aperiodic renewal sequences 

(see also [Ken,Kin]), and it was shown in [Ken] that  the Kaluza sequences are 

precisely the infinitely divisible elements in the semigroup of aperiodic renewal 

sequences (under pointwise multiplication). 

If u is a recurrent Kaluza sequence, then q(u) = 1. Accordingly, we restrict 

attention henceforth to Kaluza sequences with q(u) = 1. The Kaluza sequence u 

is positively recurrent iff u,~ ~ u ~  > 0 as n T c~, or equivalently 

Z k log < OO. 

I¢----1 

This will be the main tool for constructing the positively recurrent renewal se- 

quences appearing in renewal sequence equivalence. 

Two questions arise. When are two Kaluza sequences equivalent? When is a 

renewal sequence equivalent to a Kaluza sequence? 
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Let u be any non-negative sequence, with u,~ > 0 for all n large (for example 

an aperiodic renewal sequence), then 

v~(u)  - Un+l and p , ( u )  - v ~ - I  
Un Vn 

are defined for large enough n. Indeed, if 

n~, :=  m i n { n  > 1, uk > 0 

then pn(u)  is defined V n _> n= - 1. 

Suppose u,~ > 0 for every n > 0, then 

Vn -- 1-I  Pn+j" 
VnTkA-1 j = l  

Thus,  if un "~ Un+l, and pn _< 1 V n _> 1, then 

Vn 
O < V n  ( 

k....-}cx~ Vn+k+ 1 

whence u is a Kaluza sequence, and 

V k > n - 1 }  

On the other  hand, if 

we have 

PROPOSITION 4.1: 

as n -+ c~. I f  

oo 

Z [l°gpn(u) l  < c~, 
n = l  

U, = f i  p~^". 
k=l  

• n( logpn(u) )+ < cx~, 

then u is equivalent to a Kaluza sequence w such that  

E , llogp,,(u)- logp.(w)l < 

Let  u be an aperiodic renewal sequence satisfying u,~ ~ un+ l 

k O0 

j=l j=l 
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Proof'. By aperiodicity, there exists no > 0 such tha t  the semigroup in 1~I gener- 

ated by {1 _< k < no: uk > 0} contains every n 6 N n [no, co). I f  {gn: n 6 N} is 

the probabil i ty distr ibution on l~l satisfying 

n 

~n ---- E gkUn-k, 
k = l  

set 

{ gnoo 
hn - - - -  ~-~k=no gk 

0 

for 1 < n < n o ,  

for n = no, 

else, 

and let v be the renewal sequence defined by 

V n  = ~ - ~ h k V n - k .  

k----1 

Since vn = u~ for 1 _< n < no, we have tha t  v,~ > 0 for n >_ no. Since P .  is defined 

on finitely many  states, we have tha t  v is positively recurrent,  and, moreover 

3vc~ > 0 ,  r E  (0,1) 9 vn = v ~ ( l + O ( r n ) ) .  

Define a by 
1 f o r l < _ n < n o ,  

an - - - -  u~ for n > no, 
Vn 

then an > 0 for every n > 1, a,~ .v an+l ,  and (as un = vn Y 1 _< n < no) 

un = anVn V n > l. 

Moreover, 

l o g p , ( a )  - l o g p , ( u )  = O(r") as n --+ co, 

whence 
oo 

n(logpn(a))+ < co. 

Define sequences v'  and w by 

V n :---- ~ 

k 9  p t : ( a ) > l  

! 
W n  = a n Y  n .  
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This product converges, and v' is a positively recurrent Kaluza sequence, since 

E k log oo. < 

k = l  

Since av ~ = w,  we have w,~ ..~ w,~+l, and by inspection, 

> p ~ ( w )  = ~ P~(a)  f o r p , ( a ) < l ,  
1 

- ( 1 for pn(a )  > 1, 

whence, by the remarks preceding this proposition, w is a Kaluza sequence. 

Moreover, 

U V  I ---- a v v  t ---- w v  

~_~ n l l o g p ~ ( u )  - logp,(w)l  < c~. 

PROPOSITION 4.2: I f  u, u ~ are K a l u z a  sequences,  and  

oo 

E nl logpn(u) - logp~(u')] < ~ ,  
n----~ 1 

t hen  u and u ~ are equivalent .  

Proof:  Define another Kaluza sequence w by 

p.(w) := p.(~)  v p.(u'). 

It follows easily from the definitions that  

U ~- V W ,  U ! ~-  V V W  

where v, v ~ are Kaluza sequences defined by 

p.(u)  p.(u') .  
p.(v)  = p.(w)'  P"(¢) = p . (w) '  

indeed, it follows that  v, and v' are positively recurrent, whence u and u' are 

equivalent. 

and 
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PROPOSITION 4.3: Let  u be an aperiodic renewal sequence, and let w be a KMuza 

sequence such that  

then 

nl l ogp , (u )  - logp , (w) l  < oo, 
n ~ - ~ n u  

Proof'. 

For /3  ~_ O, let u (~) be defined by 

This follows from Proposit ions 4.1 and 4.2. 

It  can be calculated tha t  

1 

u(Z) - (n + 1)a 

( 1 )  
/3 + 6 ,  where n16,~ I < oo. log p n ( ( ~ ) )  = n --5 

n----1 

The  renewal sequence u (~) is recurrent  for 0 < /3  < 1. By [1], T,,ca) and T~o,) are 

dissimilar when 0 < / 3  # / 3 '  _< 1. 

COROLLARY 4.4: Let  u be an aperiodic renewal sequence such that  

n ~ n  u 

then 

u "~ u (t~). 

5. Random walks 

In this section, we prove 

THEOREM 5.1 : I f  f is an aperiodic probabi l i ty  on Z a sat is fying (1), and u .  ( f )  = 
(.) 

Po,o(f) ,  then 

u ~ u C~). 
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L E M M A  5 . 2 :  

(0, 2] is a finite set, e > 0, and that  

u,~ = K u  (~) 1+ ~ - + 0  

w h e r e K > 0 ,  anda  7 E R  (3'EF), then 
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Suppose that  u is a bounded, non-negative sequence, ~ > O, F C 

log = n-- ~ 

a s  Tt - - -400  

where ~-- ]n l~l  < ~ .  
n = l  

Proof'. We'll show that 

lOg(p-~) = lOg(p~(ul-(#)) ) + O ( n 2 ~  ) 

where e' > 0. Set 

:= 0 1 A s  u ~ )  = K 1+ ~--~+ 

a~ n ----* (:x) 

a s  T$ ----~ (X). 

Using the Taylor expansion of log(1 + x) near 0, it follows that 

(~nn) Z ' ( 1 ) B,~:=log 1 = - l o g K +  ~ + 0  ~ asn~cx~,  
7EF  ~ 

' E R (3' E F'), and e' > 0. If B~ = B~+I - B~, where F ~ C (0, 2] is a finite set, a 7 
! ] and B;~ = Bn+l - Bn, then 

(1) 
log = log (a) + Bn-l" 

Using the Taylor expansion of (1 + x) -7, (3' > 0) near 0, we see that 

, 1 ( )  - - = - -  0 1 
n7 (n + 1)7 n7+1 + ~ ' 

whence 

where e" > 0. 

1 ) 
a s  n ----r O0 
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Proof of Theorem 5.1: We'll establish the precondition of Lemma 5.2. Let X 

be a random variable on Z d distributed a s / ,  and let 

~p(x) = E(e ix'X) -- E fneiW'n (x • Rd). 
n E Z  d 

Choose ~ > 0 such that I1 - ~o(x)l < r < 1 for Izl _< ~, and set 

¢(x) := log ~(x) + ~(~--~), 
2 

where a(x) = E((x. X)u), and log is defined in a small neighbourhood of 1 as 

that  holomorphic inverse of the exponential function with log 1 = 0. Since f is 

aperiodic, we have that  

I~(x)l_<r'<l V6_<lxl<_~'. 

It follows that  

1 /N (~(t))"dt + O(r'") 
u ~ -  (2~r)d (o,~) 

1 t '* 

A,, + O(r"*) 
- (27r)dnd/2 

where N(0, r) = {x E Rd: Ixl < r}, and 

Clearly 

and 

An = qo dt 
( 0 , 6 vra3 

= /N(o,ev/E) e-~(t)/2 exp (n¢ (-~n ) ) dr" 

A~ --* A = fR~ e-a(t)/2dt' 

A - A,, = /N(o,~v~) e-a(t)/2 ( 1 -  exp (n¢ ( ~n ) ) ) dt + O(r''*) 

where r "  • (0, 1). 
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Using (1) and Taylor's theorem, for Ixl _< 5, 

6 k 

~b(x) = Z E a( i l , . . . , ik)  l ~  xi~ + O(Ixl 7) 
k=3 1~il ,...,i~_d u = l  

as x ~ O, whence for ]x I __< 5v/-n, 

6 1 k , , . / , i x17  ~ 
n ¢ ( ~ )  = E - Z a( i l , . . . , ik)  H x i ~  to | - - - - i f - , ,  

x/~ = n2-1 l~_il,...,iu<d u=l  \ f$2 ] 

and 

4 1 
~"~(~)- 1= }2 ,~ ~2 b(il,...,ik+~) II x,~ +o 

k-~l l~_Q,...,iu+2~_d v = l  \ n 2  ] 

as x --* 0. Thus 

4 k+2 

/ z n A n -  A = e 2 --v b(il,...,ik+2) xi~ 
e _ n~ l<_Q,...,ik+2~_d v=l 

= E ---/- -t- 0 
k = l  ~tg 

It follows that 
4 

u ,~=un(1 /2 )  A +  ~ + O  
= n~ 

a s  } 2 - - - - ~ .  

Theorem 5.1 is now established by Lemma 5.2, and Corollary 4.4. 

6. P r o o f  o f  t h e  m a i n  t h e o r e m  

Suppose f E ~l~(zd) satisfies (1), then, by Theorem 5.1, u(f)  ~ u(d),  and hence 

u ( f )  ~ U(Tr (d)) (as, in particular, T "(d) satisfies (1), a n d  u(7r (d)) ~ ll(~)).d 

Thus, by Theorem 3.6 (for d = 1, 2), Tf and T~(~) are isomorphic. 
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